
Application-Centric Networking Framework
for Wireless Sensor Nodes

Sukwon Choi Hojung Cha

Dept. of Computer Science, Yonsei University, Seoul, Korea
{sukwon,hjcha}@cs.yonsei.ac.kr

Abstract

Wireless sensor network technology has found diverse
applications in numerous fields. As the networking
technology is refined in many ways, the need for system
modulation with effective performance becomes essential.
A multitude of architectures, which includes system
abstraction and layering, has been proposed to solve the
need at the operating system level. However, previous
efforts do not qualify for networking architecture
required by sensor networking, since they are aimed at
hardware abstraction or protocol-based layering. In this
paper, we classify developers into kernel, network and
application developers and propose a network
architecture that enables those developers to program
independently. Network stack is separated into three
different layers; MLL, NSL, DNL. This three-layered
architecture provides an effective programming
environment to sensor network developers by minimizing
modification of other layers and maximizing reusability of
the networking module. To validate the proposed
mechanism, we implemented and assessed the
performance with a few network algorithms and
applications, based on the RETOS, which supports a
dynamic loadable kernel module.

1. Introduction

The WSN (Wireless Sensor Network) technologies have
made it possible to distribute sensor nodes in numbers
and to gather information and to perceive specific events.
The technology has been applied to various areas such as
construction [1], science [2], oceanography [3], and now
it finds more applications. Various networking protocols
have been proposed and implemented because WSN
requires optimized protocols depending on the
applications. As the number of protocols and applications
grow, effective management becomes more necessary
from the viewpoint of the operating system. Accordingly,
research becomes active in the areas of system abstraction,
layering and modularizing, and results in various works.
Among the research is optimized hardware abstraction
architecture [4]. The research includes the development of
operating systems, such as SOS [5], Contiki [6], and
RETOS [7], which can be modified partially and
dynamically. SOS supports system modularization

allowing programmers to implement network protocols
and applications on the statically programmed kernel with
dynamic loadable library. Contiki supports a three-layered
architecture that enables the development of kernel-
independent applications. SOS and Contiki do not
distinguish between kernel and applications since they
adopt single stack architecture. RETOS overcomes the
aforementioned architectural deficiency, which is unclear
separation of kernel and applications. RETOS not only
separates kernel and applications, but supports a dynamic
loadable kernel library, providing an advanced
implementation environment.

A clear definition of modules is required for
modularized operating systems to be useful. This is
particularly important considering the limited resource
availability in WSN. In the current implementation
environment, a developer takes the responsibility from
developing a MAC protocol to programming applications.
Thus, the module architecture relies heavily on the
developer’s programming style, and shows a lack of both
system efficiency and module reusability. For instance,
the primary usage of the modules of SOS and Contiki is
debugging or modifying the implemented algorithms.
This is caused by improper layering architecture,
especially a lack of distinct layers for developing network
protocols.

TCP-IP’s wide usage originates from its clear layering
and the layers’ functionalities. This should apply to WSN
as well. Existing networking protocols for WSN usually
adopt a cross-layering architecture, which allows each
layer to modify the functions of the layer below [8]. To
provide an independent networking architecture B-MAC
[9], for instance, adopts an independent MAC protocol
architecture, and SP (Sensornet Protocol) [10] offers
translucent link abstraction. In [11], data-centricity was
defined as an important characteristic, and network
layering was suggested for data fusion. These works
partially succeeded in separating networking protocols
from the rest of the kernel. However, a more concrete
independent networking architecture is required. To give
layers full independency, we should approach the
architecture from the point of programming. WSN
developers can be divided into kernel developers,
network developers, and application developers. Kernel
developers take responsibility for implementing core parts
of operating systems so that the kernel fully utilizes the

hardware. Network developers implement various
networking algorithms, and using those networking
algorithms application developers program the required
functions.

In this paper, we propose a layering architecture that
provides a distinct and independent programming
environment to those three classes of developers. The
architecture includes both the advantages of traditional
networking architecture and the resilience of a
modularized operating system. In this architecture,
application developers are able to build prototypes and to
implement them easily. Network developers are able to
program various networking algorithms in application-
and kernel-independent way. For this purpose kernel
consists of two parts; the static part and dynamic part.
Appropriate protocol architectures will be given to those
two parts of the kernel, allowing minimal modification to
other layers and maximum reusability of network
modules when implementing.

The rest of the paper is organized as follows. In
Section 2, we review the RETOS operating system. In
Section 3, we describe the proposed stack architecture. In
Sections 4 and 5, various implementations of networking
protocols and applications are given using the proposed
network stack, and the performance is analyzed. Sections
6 and 7 show related works and conclude the paper.

2. Background

In this section we briefly discuss the elements that need to
be considered when designing a networking architecture
in WSN, and introduce RETOS which is the operating
system used with our work.

2.1 WSN Network Architecture

WSN utilizes hardware with limited resources and adopts
an ad-hoc multi-hop networking mechanism. These
characteristics have made WSN use an application-
dependent cross-layering architecture without separated
layers. Figure 1 shows the difference in protocol
architecture between a traditional network and a sensor
network. Traditional networking architecture has
hierarchical network layers, and each layer proceeds
based on the function of the layer below. As shown in
Figure 1 (A), only a network protocol and below are
needed for the traditional routers to relay data packets,
while, as shown in Figure 1 (B), each node of the sensor
network functions as a router and the entire layers
participate in data transmission. Multi-hop networking as
well as in-network processing is required for sensor nodes
to communicate with adjacent nodes. In-networking
processing has different characteristics from multi-hop
networking since the communication is targeted to the
neighboring nodes. The majority of applications use both

Logical Data Transfer Physical Data Transfer

Application Layer
Transport Layer
Network Layer

MAC Layer
Physical Layer

Application Layer
Transport Layer
Network Layer

MAC Layer
Physical Layer

Host A Host C

Network Layer
MAC Layer

Physical Layer

Router

Application Layer
Transport Layer

(a) Traditional networking environment

Node A Node B Node C

Physical Layer Physical Layer Physical Layer

App-Dependent
Network Protocol

Application Application Application

App-Dependent
Network Protocol

App-Dependent
Network Protocol

(b) Sensor networking environment

Figure 1. Protocol stack in general network and sensor
network

multi-hop and hop-to-hop networking for data
transmission.

Considering these features, stack architecture for a
sensor network should meet two requirements. First,
independency of each layer should be guaranteed. Each
layer should be able to choose a different networking
protocol without affecting the other layers. Second, a
higher layer should be able to receive the necessary
information from the layer below. These are essential
since different network protocols are adopted in various
situations.

The layers of networking architecture should provide
the necessary functions to relative developers, so that
developers do not need to modify other layers. In this
layering architecture, basic hop-to-hop communication is
handled in lower layers, and end-to-end communication is
handled in higher layers. Standardized API is defined to
enable efficient information and data exchange between
the layers, and appropriate API needs to be provided to
the developers as well.

2.2 RETOS Overview

RETOS [7] is being developed to provide a reliable multi-
threading environment and a dynamic Loadable Kernel
Module (LKM) to users. RETOS supports POSIX
1003.1b real-time scheduler interface, and allows users to
implement additional LKM using Standard C. RETOS
adopts the dual mode and protection mechanism, and
protects a system from the errors caused by application
programs. RETOS has single kernel stack to minimize the

Code (Flash Rom) Data (RAM)

Kernel area

User area

User stack

User data

Kernel Data

Hardware (MCU control register, I2C, SPI, …)

Application Building

Untrusted
Application Untrusted Application

Dynamic checks inserted

Static code
checking

Code disseminationSensor Node

Applications

Scheduler
Policy

Priority

Erred apps managerVariable
timer

Single kernel
stack

Module dataModules

st
at

ic
 k

er
ne

l
us

er
 sp

ac
e

dy
na

m
ic

ke

rn
el

System call

Module
Manager

Function
Table

Figure 2. RETOS overview

memory consumption imposed by adopted dual mode.
RETOS is currently being implemented in MoteIV Telos.
platform [12].

Sensor nodes are generally equipped with MPU,
which does not have MMU. This lack of MMU prevents
the memory addresses of the modularized kernel to be
allocated when compiled. RETOS supports LKM
architecture that overcomes this problem. The system
allows users to choose kernel functionalities required by
application programs, and the resulting modularized
kernel saves resources and takes on a optimized form.
Figure 2 describes RETOS with LKM. Application
programs are based on the operating system after their
feasibility is checked. Loaded application programs are
given resources and managed by a scheduler. The
operating system consists of static codes and dynamic
kernel modules. Static codes have OS core functionalities
and hardware-dependent codes. Dynamic codes contain
shared libraries, which are available for application
programs.

3 . A p p l i c a t i o n - C e n t r i c N e t wo r k i n g
Framework

3.1 Architecture Overview

Network layering architecture makes an easy develop-
ment environment, but imposes overheads on developers
since available resources are limited. In our work, we
distinguish between performance-critical part and
usability-critical part in terms of development. The
performance-critical part is closely related to hardware
and should be optimized at the device driver level by the
kernel developer. The usability-critical part is classified

Protocol A

D
yn

am
ic

N

et
w

or
ki

ng
 L

ay
er

A
pp

lic
at

io
ns

N
et

w
or

ki
ng

Su

pp
or

t L
ay

er

Logical Link Table (LLT)

Data
Controller

M
A

C
 &

 D
at

a
Li

nk
 L

ay
er

Protocol B

Protocol
E

Protocol D

Protocol C

MAC Protocol

Network Device Driver

H
ar

dw
ar

e

D
at

a
D

el
iv

er
y

Q
ue

ue

St
at

ic
 K

er
ne

l
D

yn
am

ic
 K

er
ne

l

Figure 3. Proposed network stack

into the network protocol part and application part. An
optimized networking algorithm should be able to be
implemented in the network protocol part, and data-
driven programming, which enables sensor nodes to
gather information, should be available in the application
part. For this, this paper differentiates the static part of the
kernel from the dynamic one. Network functionality in
the static kernel is to maintain the connection to
neighboring nodes and transmit the data packets to them.
Implementation of networking algorithms and supporting
application programs takes place in the dynamic part of
the kernel.

Figure 3 shows three-layered architecture; MLL
(MAC and Data Link Layer), NSL (Networking Support
Layer), and DNL (Dynamic Network Layer). The static
kernel contains MLL and NSL. The bottom layer MLL,
which controls the network devices, manages the physical
connection and transmits data packets. NSL supports
logical connections, managing neighboring nodes and
data transmission. DNL, which belongs to the dynamic
part of the kernel, enables implementing network protocol
algorithms and provides user API for easy development.
In the proposed network architecture, three classes of
developers can implement layer-specific programs,
without interfering in others, and the usage of
modularization of operating system becomes maximized.
In particular, the RETOS loadable kernel module makes
efficient network architecture possible. The following
sections describe the detailed design of NSL and DNL.

3.2 Networking Support Layer

NSL, interposed between MLL and DNL, maintains the
information of neighboring nodes and passes it to DNL.

Logical Link Table (LLT)

Table Management
API Group

Network Supporting Layer

Status Management
API Group

Data Delivery
API Group

Table Manager Data Delivery ManagerStatus Manager

MLL Abstraction

Data
Controller

Receive Queue Send Queue

Suspend Queue

Figure 4. Networking Support Layer

Table 1. Elements of Logical Link Table (LLT)
Item Description Item Description

Node ID Node sequence number Delivery Rate Delivery success ratio

Position Logical position ACK/NACK Use ack/nack or not

LQI Link quality Delivery Time Packet delivery time

RSSI Signal strength Battery Level Battery residual

CCA Channel loading status Valid Node validate selection

The network algorithm used in DNL determines the
destination node, and transmits the data to the target node.
As shown in Figure 4, NSL consists of the Table Manager,
Status Manager, Data Delivery Manager, and NSL API.
The Table Manager manages Logical Link Table (LLT)
which contains the information of neighboring nodes.
LLT keeps the data between the nodes that can guarantee
real-time, energy efficiency, and reliability (Table 1). To
preserve LTT, the 2-way ADV-REQ handshake protocol
[13], is used. The querying period is set to be periodic or
non-periodic by network protocol developers by using
API.

The Data Delivery Manager manages Send/Suspend/
Receive Queue for data transmission. Suspend Queue is
added to Send/Receive Queue, allowing an individual
router to function as a router in the proposed architecture.
Suspend Queue is where received packets are suspended
until the packets’ next routing node is determined. The
data transmission rate is changed using Suspend Queue,
and this allows avoiding bottlenecks to be avoided and
the traffic to be monitored. The Status Manager monitors
the general status of the incoming data, the information of
the specified neighboring nodes and the network queue.
Then the Status Manger sends the information to DNL
and sends the decision of DNL to NSL. The Status
Manager also hands over the received packets to Suspend
Queue, or transmits them directly to the neighboring
nodes. NSL API, the interface of DNL and NSL, consists
of the Table Management API Group, Status Monitoring
API Group, and Data Delivery API Group so that NSL
API controls three managers. Each API in the dynamic

Dynamic Networking Layer

NSL API

DNL API

Structural Monitoring
Application

Environment
Monitoring Application

Tracking
Application

Dynamic Networking Layer Module

DNL API Abstraction

Core Network
Algorithm

NSL Control Abstraction

Data Management
Algorithm

Protocol A

Protocol A

Figure 5. Dynamic Networking Layer

loadable kernel module is invoked as a kernel function.

3.3 Dynamic Networking Layer

In DNL, networking algorithms are implemented and
packaged in a library using reconfigurable RETOS
dynamic kernel modules. Protocols in the layer decide the
destination of data packets, and send them to the
appropriate node. The protocols can be built reliable or
real-time depending on the applications and data types.
Existing protocols can be implemented in this layer. For
this, standardized API is defined in DNL, and
implemented network algorithms provide generic API to
users via DNL API. Various network algorithms are
managed as a set of the library in the dynamic module.
Standardized DNL API is readily available to users
without causing any confusion. DNL modules are
assigned dynamically depending on applications. For
example, a structural monitoring application requires
reliable data transmission, an environment monitoring
application needs periodic data burst, and a tracking
application detects events and sends the data in a limited
time. They all need different network algorithms, and
DNL provides the required modules to the applications.

Figure 5 describes the DNL module architecture. The
DNL module keeps DNL API Abstraction to provide
standardized DNL API. NSL API at the bottom of DNL
maintains NSL Control Abstraction. The DNL module
controls the information of neighboring nodes, network
status information, and data transmission provided by
NSL via NSL control abstraction. The core network
algorithm and data management algorithm are
implemented between DNL API abstraction and NSL
control abstraction, making network protocols available
to the DNL module. DNL API is defined in different ways
since applications take various forms. In this paper, the
concept of existing TCP/IP has been applied to the sensor
network. To make applications independent from network
protocols, users are allowed to choose a network

protocol; it should provide the required functionalities.
This socket-like networking mechanism does not make
usage of port numbers, but depends on the chosen
network modules. Network protocols are implemented
and encapsulated, and, by using them application
developers are able to make independent applications
regardless of the actual implementation of the network
protocols.

4. Implementation

The proposed networking architecture has been
implemented in the RETOS kernel. We have built MLL
and NSL in the kernel and implemented DNL using
various network algorithms with LKM, and evaluated the
validity of the proposed network architecture.

Tmote Sky [12] uses the CC2420 [14] transceiver
which offers a data rate of 250kbps in 2.4GHz. The
hardware is compatible with IEEE 802.15.4 MAC. The
data frames used in IEEE 802.15.4 of CC2420 are
handled with packets, leaving little change to be
controlled by software. That makes it difficult to a
implement variety of MAC, but CC2420 provides several
advantages. It handles the majority of the tasks at the
hardware level, and offers a well-defined interface for
software development leading to minimizing MLL in size
and improving it in performance. CC2420 is equiped with
the basic elements such as CCA and LQI, which are
necessary to implement NSL. Their presence makes more
efficient MLL than the software-based MAC such as S-
MAC [9], B-MAC [19], or Z-MAC [15]. Assured that
fundamental functionality such as MAC protocol will be
supported by hardware in the future, we have
implemented MLL out of a radio transceiver. MLL is
implemented using RETOS Device Driver Architecture
(R-DDA) for smooth connection to NSL.
MLL and NSL are both implemented in the static part of
the kernel, but should be separated from each other to
guarantee independency. MLL is involved with the
hardware details, and has to be device-dependent. NSL
should be device-independent since it manages
neighboring nodes and transmitted data. We developed
NSL and implemented the Neighbor Table, Network
Queue, and API using a device-independent data structure.
DNL uses a dynamic architecture and this causes more
problems than MLL or NSL does. To implement DNL
API Abstraction and NSL Control Abstraction, memory
waste and dynamic linking should be handled. RETOS
LKM solved these problems [7]. In the implementation,
we used a single shared kernel stack to run the modules.
In this case, however, module data, which are stored in
the kernel stack can be corrupted during the context
switching. To solve this problem, we blocked context
switching while the module function runs.

func 1()
func 2()

call func 1 at #100

#100
#110

... ...

access var b at #1002

var a
var b

#1000
#1002

te
xt

...

da
ta

(a) after compilation

func 1()
func 2()

call func 1 at #10000

#10000
#10010

... ...

access var b at #2002

var a
var b

#2000
#2002

Fl
as

h

...

R
AM

(b) after installation

...

Figure 6. Relocation of DNL module

The dynamic module linking method is the next to be

considered. Generally, MPU in a sensor node is a lack of
MMU which translates a physical memory address into a
virtual memory address and vice versa. In addition to the
translation, MMU authenticates the access to the kernel
mode. For these reasons operating systems, which use a
loadable library, do not function properly without MMU.
Relocation, as shown in Figure 6, was used to solve the
problem. Absolute memory addresses are pre-defined
when the source code is compiled, stored in the
Relocation Table, and modified when the respective
codes are loaded. In this case, the entire code image
should be scanned and modified, but performance can be
improved since memory access is available using absolute
memory addresses.

The actual network protocol was developed on DNL.
Reliability, real-time, and energy efficiency are the
important characteristics for data transmission. They
affect each others’ performance, so maximizing all three
features at the same time is difficult to achieve. The
suggested network architecture should consider these
characteristics of WSN. To show this we implemented
respective network protocols for each feature. A reliable
network protocol uses LQI measurement based routing
algorithm [16]. Real-time network protocol adopts
SPEED [17]. An energy-aware network protocol employs
[18], which monitors the battery leftover and finds the
optimized route, and was developed on NSL. These three
network protocols were implemented using the RETOS
loadable module. In the next section, we show that, while
running the same application, a network protocol can be
alternated with others without any modification of the
application codes.

5. Evaluation

In general, sensor network applications can be classified
into two fields. One includes periodic monitoring or
event-responded monitoring, and various tracking
programs that belong to the other. We implemented two
dif ferent appl ication programs to evaluate the
performance of the suggested architecture; a simple
environment monitoring application and an event-

(a) Reliable
 Network Protocol

(b)Real-time
Network Protocol

(c) Energy-aware
Protocol

Figure 7. Routing paths of RETOS-Surge according to
three DNL protocols

responded tracking application. We chose the Surge, one
of the representative applications built on TinyOS, for the
environment monitoring application. Only the application
part of the program has been ported, while the multi-hop
routing algorithm has been excluded. We used RETOS-
MPT [18] for the tracking application.

The performance of the applications has been
evaluated using three DNL protocols. The architecture
proposed in this paper provides an efficient programming
environment, allowing minimum changes on the rest of
the parts other than the application layer, and increased
reusability. Thus, performance has been measured
according to these independence and reusability.

5.1 Modularity and Adaptability

The reusability of modules has been tested by running
two applications with different DNL modules. Since the
applications were implemented using standardized DNL
API, they should run by simply changing modules. Figure
7 shows the respective results of the three different DNL
modules used, and illustrates the packets’ routing paths.
As shown in the figure, each routing path is dependent on
the used DNL modules. This clarifies that DNL modules
and applications can be developed and used separately.
Hence various DNL modules and applications can be
a ssemb led wi th ne twork p ro toco l s by needs .
 To validate the independence of the layers, the
structures of the network packets have been analyzed and
are shown in Figure 8. Our architecture is distinguished
from SP [10] in the fact that each layer is independent
from the layer above. This is shown by analyzing the
packets’ independency between each layer and the one
above. The structure of a packet is changed only in the
DNL when a used module is alternated; meaning that a
change of the packet does not affect packets in different
layers. This shows that each layer functions
independently and separately.

5.2 Overhead Analysis

The proposed network architecture minimizes the

NSL Addressing Applcation data

Reliable DNL Protocol

LQI Value

NSL Addressing Applcation data
Packet Delay

Real-time DNL Protocol

NSL Addressing Applcation data
Battery Value

Energy-aware DNL Protocol

Figure 8. Send data packet composition

dynamic part to reduce performance overhead, and it
should show the equivalent performance to those that do
not use layering architecture. We compared RETOS-
Surge with NSL and DNL to the counterpart without the
layers, and observed overheads by measuring data
transfer time in one-hop and multi-hop topologies. Data
transfer time in the one-hop topology has been observed
to check if it is stable and does not cause unreasonable
overheads. Figure 9 shows that applications that do not
make use of NSL have noticeable variation in data
transfer time. However, the proposed architecture shows a
faster and more stable data transfer time than its
counterpart. The architecture that does not adopt layering
principle has no proper queue control mechanism, and is
affected by the nodes’ current status, causing irregular
transmission. On the other hand, our architecture
guarantees fast and stable transmission since the queue
control mechanism and the data transmission between
nodes are conducted only within the NSL of the kernel.

The proposed architecture must show higher
performance at data transmission than the ones not
utilizing network architecture, because the proposed
architecture only relays multi-hop data regardless of the

Reliable DNL Protocol

0
50

100
150
200
250
300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Message Count

Pa
ck

et
 D

el
ay

 (m
s)

Real-time DNL Protocol

0
50

100
150
200
250
300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Message Count

Pa
ck

et
 D

el
ay

 (m
s)

Energy-aware DNL Protocol

0
50

100
150
200
250
300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Message Count

Pa
ck

et
 D

el
ay

 (m
s)

No-NSL
NSL + DSL

No-NSL
NSL + DSL

No-NSL
NSL + DSL

Figure 9. One-hop data transmission

Reliable DNL Protocol

0
100
200
300
400
500
600

1 2 3 4
Node Count

Pa
ck

et
 R

ec
ei

ve
 T

im
e

(m
s)

Real-time DNL Protocol

0
100
200
300
400
500
600

1 2 3 4
Node Count

Pa
ck

et
 R

ec
ei

ve
 T

im
e

(m
s)

Energy-aware DNL Protocol

0
100
200
300
400
500
600

1 2 3 4
Node Count

Pa
ck

t R
ec

ei
ve

 T
im

e(
m

s)
No-NSL
NSL + DSL

No-NSL
NSL + DSL

No-NSL
NSL + DSL

Figure 10. Multi-hop data transmission

Table 2. Code size for RETOS-Surge

TinyOS
(bytes)

RETOS Kernel
(bytes)

RETOS
Library + App

(bytes)

RETOS Total
(bytes)

ROM RAM ROM RAM ROM RAM ROM RAM
Reliable

DNL 17,036 668

20,464

1,052

1,003 243 21,467 1,295

Real-time
DNL 24,046 1,522 2,731 317 23,195 1,369

Energy-
aware DNL 18,201 1,800 2,473 223 22,937 1,275

Table 3. Code size for RETOS-MPT

TinyOS
(bytes)

RETOS Kernel
(bytes)

RETOS
Library + App

(bytes)

RETOS Total
(bytes)

ROM RAM ROM RAM ROM ROM RAM ROM
Reliable

DNL 20,944 597

20,464

1,052

1,942 262 22,406 1,314

Real-time
DNL 26,944 1,743 3,123 351 23,587 1,403

Energy-
aware DNL 20,253 1,943 2,987 278 23,451 1,330

packets’ source or their destination. We observed multi-
hop data transmission time, and the result is shown in
Figure 10. As the number of hops increases, our
architecture shows better performance than the one that
does not as the number of hops increases. When network
architecture is not used, the whole data packet is checked
to determine the next hop. However in our architecture,
fast data transmission is possible since switching
overhead does not occur and data packets are sent directly
in NSL.

In the sensor network environment, not only the
performance of applications but also the size of codes or
data is also important. The proposed dynamic architecture
makes the size of codes larger than others do. We
measured the size and it is shown in Table 2 and 3. As
shown in the tables, the kernel, library, and application
are run using 30k or less flash memory and 2k or less
RAM. Although this size is bigger than TinyOS, it is
acceptable considering the advantages of the dynamic
architecture.

6. Related Work

The related work can be classified into three categories:
network abstraction for WSN, kernel-independent
application development, and application-independent
implementation environment development. Network
abstraction includes Ye [19], Dunkels [20], Kumar [11],
and Polastre [10]. Ye makes an effort to implement WSN
protocols in the traditional layered model, but succeeds
only in the MAC layer. Dunkels implemented TCP/IP
stack in 8-bit AVR MCU, however the characteristics are
more suitable to a home network than to WSN. Kumar
suggested a data centric network stack, but it had many
obstacles to be deployed in real situations. It is not
suitable for some application fields such as event
detection, and independency of the layers is not
guaranteed. [10] divided WSN protocols into the link
layer and the rest, and bundled them using sensornet
protocol (SP). However, these works do not fully adopt a
network stack, but use a data structure to manage various
protocols. Moreover, they do not classify application and
network protocols. These features make these works more
appropriate to an independent-image operating system
such as TinyOS.

There are several works that try to separate kernel and
application, and these include SOS [5], Contiki [6], and
RETOS [7]. SOS divides a kernel into static part and
dynamic part, and the latter is used to implement
application. The message mechanism is used to enable
communication between the static part and the dynamic
part. For this, it suggests the message mechanism to
enable communication between the static part and the
dynamic part, becoming a successful operating system for
WSN. Contiki separates the process from the static kernel,
and uses the process to implement application. Threads
are enabled within a process, and threads communicate
with the kernel via messages. This is applicable to
modularization since the development of the application
is possible independent of kernel, however, the separation
of the memory use is still imperfect. RETOS not only
separates the kernel from application, but also supports
LKM. The detailed work on RETOS is found in [7]. An
application-independent development environment finds
various works. Some of the most representative research
fields are script programming and query programming
based on middleware [21]. These methods make
programming easy and the length of codes short, but use
of various network protocols difficult. Whitehouse [22]
and Welsh [23] suggest an easy application programming
method, providing abstract API to users. However,
applications are implemented on a static network protocol,
and they are suitable only to certain areas.

7. Conclusion

The progress of WSN technology sees no limits, and the
advent of devices with more computing power leads to
the need of better WSN development environments. This
paper offers a new WSN development environment,
proposing network architecture that guarantees the
efficiency and performance of development from the
developers’ point of view. The architecture holds the
advantages of a static network layer of the traditional
general purpose OS, and meets the diversity that is
needed in WSN. By guaranteeing the independency of
each layer, we increase the reusability of network
protocols and provide agility and ease to the development
environment. We first ported RETOS kernel to and
implemented MLL and NSL. On them we developed
several DNL protocols and examined the validity of the
proposed architecture. The results show that efficient
network programming is possible without any
degradation of performance. With this result, we are
assured that the proposed network protocol architecture is
suitable for the use in a WSN, and suggest a guideline for
modularized OS such as RETOS.

Future work will be extended to the validation of the
architectures with SOS and Contiki. Additionally, we will
build a library with various existing network protocols,
and improve the performance of our architecture by
developing a neighbor nodes managing method and a
queue managing method.

Acknowledgements
The authors would like to thank Mr. Hee Tae Jung, of
Yonsei University, for the help provided in the
preparation of this paper. This work was supported by the
National Research Laboratory (NRL) program of the
Korea Science and Engineering Foundation (2005-01352),
and the ITRC programs (MMRC) of IITA, Korea.

References

[1] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R.
Govindan and D. Estrin., “A Wireless Sensor Network for
Structural Monitoring,” In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems, Baltimore, USA, November
2004.

[2] G. Werner-Allen, K. Lorincz, M.C. Ruiz, O. Marcillo, J.B. Johnson,
J.M. Lees, M. Welsh, “Deploying a wireless sensor network on an
active volcano,” IEEE Internet Computing, accepted, in press.

[3] I, Vasilescu, K, Kotay, D, Rus, P. Corke, M. Dunbabin, “Data
Collection, Storage and Retrieval with an Underwater Optical and
Acoustical Sensor Network,” In Proceedings of the ACM
Conference on Embedded Networked Sensor Systems (SenSys 2005),
San Diego, USA November 2005.

[4] V. Handziski, J.Polastre, J.H.Hauer, C.Sharp, A.Wolisz and
D.Culler, “Flexible Hardware Abstraction for Wireless Sensor
Networks,” in Proceedings of the 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, January
2005.

[5] C. Han, R. K. Rengaswamy, R. Shea, E. Kohler and M. Srivastava,
“SOS: A dynamic operating system for sensor networks,”
Proceedings of the Third International Conference on Mobile
Systems, Applications, And Services, Seattle, USA, June 2005.

[6] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a Lightweight
and Flexible Operating System for Tiny Networked Sensors,” In
Proceedings of the First IEEE Workshop on Embedded Networked
Sensors 2004 (IEEE EmNetS-I), Florida, USA, November 2004.

[7] H. Kim and H. Cha, “Towards a Reliable Operating System for
Wireless Sensor Networks,” In Proceedings of the 2006 USENIX
Annual Technical Conference, Massachusetts, USA, May 2006.

[8] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac
protocol for wireless sensor networks,” In Proceedings of the 21st
International Annual Joint Conference of the IEEE Computer and
Communications Societies, New York, June 2002.

[9] J. Polastre, J. Hill, D. Culler, “ Versatile Low Power Media Access
for Wireless Sensor Networks,” In Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (SenSys),
Maryland, USA, November 2004.

 [10] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, I. Stoica,
“A Unifying Link Abstraction for Wireless Sensor Networks,” In
Proceedings of the Third ACM Conference on Embedded
Networked Sensor Systems (SenSys 2005), San Diego, USA
November 2005.

[11] R. Kumar, S. PalChaudhuri , D. Johnson , Umakishore
Ramachandran’ Network Stack Architecture for Future Sensors,
Rice University, Computer Science, Technical Report, TR04-447

[12] MoteIV Co. Ltd., http://www.moteiv.com/.
[13] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols

for Information Dissemination in Wireless Sensor Networks,” In
Proceedings of the 5th ACM/IEEE Mobicom Conference, Seattle,
USA, August 1999.

[14] Chipcon Inc., http://www.chipcon.com/.
[15] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a Hybrid MAC

for Wireless Sensor Networks,” In Proceedings of the Third ACM
Conference on Embedded Networked Sensor Systems (SenSys 2005),
San Diego, USA, Nov 2005.

[16] A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multhop Routing in Sensor Networks,” In
Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), LA, USA, November 2003.

[17] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher, "SPEED: A
Stateless Protocol for Real-Time Communication in Sensor
Networks," International Conference on Distributed Computing
Systems (ICDCS 2003), Providence, RI, May 2003.

[18] W. Jung, S. Shin, S. Choi, H. Cha, “Reducing Congestion in Real-
Time Multi-Party Tracking Sensor Network Application,” First
International Workshop on RFID and Ubiquitous Sensor Networks,
Nagasaki, Japan, December 2005.

[19] W. Ye, J. Heidemann, D. Estrin, A Flexible and Reliable Radio
Communication Stack on Motes, USC/ISI Technical Report ISI-TR-
565.

[20] Adam Dunkels. Full TCP/IP for 8 Bit Architectures. In Proceedings
of the First ACM/Usenix International Conference on Mobile
Systems, Applications and Services (MobiSys), San Francisco, USA,
May 2003.

[21] Yong Yao and J. E. Gehrke, “Query Processing in Sensor
Networks,” In Proceedings of the First Biennial Conference on
Innovative Data Systems Research (CIDR 2003), California, USA,
January 2003.

[22] K. Whitehouse, C. Sharp, E. Brewer and D. Culler, “Hood: a
Neighborhood Abstraction for Sensor Networks," In Proceedings of
ACM International Conference on Mobile Systems, Applications,
and Services (MobiSys '04). Massachusetts, June, 2004.

[23] M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions,” In Proceedings of the First USENIX/ACM
Symposium on Networked Systems Design and Implementation
(NSDI '04), California, USA, March 2004.

