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Abstract 

 
Wireless sensor network technology has found diverse 
applications in numerous fields. As the networking 
technology is refined in many ways, the need for system 
modulation with effective performance becomes essential. 
A multitude of architectures, which includes system 
abstraction and layering, has been proposed to solve the 
need at the operating system level. However, previous 
efforts do not qualify for networking architecture 
required by sensor networking, since they are aimed at 
hardware abstraction or protocol-based layering. In this 
paper, we classify developers into kernel, network and 
application developers and propose a network 
architecture that enables those developers to program 
independently. Network stack is separated into three 
different layers; MLL, NSL, DNL. This three-layered 
architecture provides an effective programming 
environment to sensor network developers by minimizing 
modification of other layers and maximizing reusability of 
the networking module. To validate the proposed 
mechanism, we implemented and assessed the 
performance with a few network algorithms and 
applications, based on the RETOS, which supports a 
dynamic loadable kernel module. 

 
1. Introduction 

 
The WSN (Wireless Sensor Network) technologies have 
made it possible to distribute sensor nodes in numbers 
and to gather information and to perceive specific events. 
The technology has been applied to various areas such as 
construction [1], science [2], oceanography [3], and now 
it finds more applications. Various networking protocols 
have been proposed and implemented because WSN 
requires optimized protocols depending on the 
applications. As the number of protocols and applications 
grow, effective management becomes more necessary 
from the viewpoint of the operating system. Accordingly, 
research becomes active in the areas of system abstraction, 
layering and modularizing, and results in various works. 
Among the research is optimized hardware abstraction 
architecture [4]. The research includes the development of 
operating systems, such as SOS [5], Contiki [6], and 
RETOS [7], which can be modified partially and 
dynamically. SOS supports system modularization 

allowing programmers to implement network protocols 
and applications on the statically programmed kernel with 
dynamic loadable library. Contiki supports a three-layered 
architecture that enables the development of kernel-
independent applications. SOS and Contiki do not 
distinguish between kernel and applications since they 
adopt single stack architecture. RETOS overcomes the 
aforementioned architectural deficiency, which is unclear 
separation of kernel and applications. RETOS not only 
separates kernel and applications, but supports a dynamic 
loadable kernel library, providing an advanced 
implementation environment. 

A clear definition of modules is required for 
modularized operating systems to be useful. This is 
particularly important considering the limited resource 
availability in WSN. In the current implementation 
environment, a developer takes the responsibility from 
developing a MAC protocol to programming applications. 
Thus, the module architecture relies heavily on the 
developer’s programming style, and shows a lack of both 
system efficiency and module reusability. For instance, 
the primary usage of the modules of SOS and Contiki is 
debugging or modifying the implemented algorithms. 
This is caused by improper layering architecture, 
especially a lack of distinct layers for developing network 
protocols. 

TCP-IP’s wide usage originates from its clear layering 
and the layers’ functionalities. This should apply to WSN 
as well. Existing networking protocols for WSN usually 
adopt a cross-layering architecture, which allows each 
layer to modify the functions of the layer below [8]. To 
provide an independent networking architecture B-MAC 
[9], for instance, adopts an independent MAC protocol 
architecture, and SP (Sensornet Protocol) [10] offers 
translucent link abstraction. In [11], data-centricity was 
defined as an important characteristic, and network 
layering was suggested for data fusion. These works 
partially succeeded in separating networking protocols 
from the rest of the kernel. However, a more concrete 
independent networking architecture is required. To give 
layers full independency, we should approach the 
architecture from the point of programming. WSN 
developers can be divided into kernel developers, 
network developers, and application developers. Kernel 
developers take responsibility for implementing core parts 
of operating systems so that the kernel fully utilizes the 



hardware. Network developers implement various 
networking algorithms, and using those networking 
algorithms application developers program the required 
functions. 

In this paper, we propose a layering architecture that 
provides a distinct and independent programming 
environment to those three classes of developers. The 
architecture includes both the advantages of traditional 
networking architecture and the resilience of a 
modularized operating system. In this architecture, 
application developers are able to build prototypes and to 
implement them easily. Network developers are able to 
program various networking algorithms in application- 
and kernel-independent way. For this purpose kernel 
consists of two parts; the static part and dynamic part. 
Appropriate protocol architectures will be given to those 
two parts of the kernel, allowing minimal modification to 
other layers and maximum reusability of network 
modules when implementing. 

The rest of the paper is organized as follows. In 
Section 2, we review the RETOS operating system. In 
Section 3, we describe the proposed stack architecture. In 
Sections 4 and 5, various implementations of networking 
protocols and applications are given using the proposed 
network stack, and the performance is analyzed. Sections 
6 and 7 show related works and conclude the paper. 

 
2. Background 

 
In this section we briefly discuss the elements that need to 
be considered when designing a networking architecture 
in WSN, and introduce RETOS which is the operating 
system used with our work. 

 
2.1 WSN Network Architecture 

 
WSN utilizes hardware with limited resources and adopts 
an ad-hoc multi-hop networking mechanism. These 
characteristics have made WSN use an application-
dependent cross-layering architecture without separated 
layers. Figure 1 shows the difference in protocol 
architecture between a traditional network and a sensor 
network. Traditional networking architecture has 
hierarchical network layers, and each layer proceeds 
based on the function of the layer below. As shown in 
Figure 1 (A), only a network protocol and below are 
needed for the traditional routers to relay data packets, 
while, as shown in Figure 1 (B), each node of the sensor 
network functions as a router and the entire layers 
participate in data transmission. Multi-hop networking as 
well as in-network processing is required for sensor nodes 
to communicate with adjacent nodes. In-networking 
processing has different characteristics from multi-hop 
networking since the communication is targeted to the 
neighboring nodes. The majority of applications use both  
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Figure 1. Protocol stack in general network and sensor 
network
 
multi-hop and hop-to-hop networking for data 
transmission. 

Considering these features, stack architecture for a 
sensor network should meet two requirements. First, 
independency of each layer should be guaranteed. Each 
layer should be able to choose a different networking 
protocol without affecting the other layers. Second, a 
higher layer should be able to receive the necessary 
information from the layer below. These are essential 
since different network protocols are adopted in various 
situations. 

The layers of networking architecture should provide 
the necessary functions to relative developers, so that 
developers do not need to modify other layers. In this 
layering architecture, basic hop-to-hop communication is 
handled in lower layers, and end-to-end communication is 
handled in higher layers. Standardized API is defined to 
enable efficient information and data exchange between 
the layers, and appropriate API needs to be provided to 
the developers as well. 

 
2.2 RETOS Overview 
 
RETOS [7] is being developed to provide a reliable multi-
threading environment and a dynamic Loadable Kernel 
Module (LKM) to users. RETOS supports POSIX 
1003.1b real-time scheduler interface, and allows users to 
implement additional LKM using Standard C. RETOS 
adopts the dual mode and protection mechanism, and 
protects a system from the errors caused by application 
programs. RETOS has single kernel stack to minimize the 
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Figure 2. RETOS overview 

 
memory consumption imposed by adopted dual mode. 
RETOS is currently being implemented in MoteIV Telos. 
platform [12].  

Sensor nodes are generally equipped with MPU, 
which does not have MMU. This lack of MMU prevents 
the memory addresses of the modularized kernel to be 
allocated when compiled. RETOS supports LKM 
architecture that overcomes this problem. The system 
allows users to choose kernel functionalities required by 
application programs, and the resulting modularized 
kernel saves resources and takes on a optimized form. 
Figure 2 describes RETOS with LKM. Application 
programs are based on the operating system after their 
feasibility is checked. Loaded application programs are 
given resources and managed by a scheduler. The 
operating system consists of static codes and dynamic 
kernel modules. Static codes have OS core functionalities 
and hardware-dependent codes. Dynamic codes contain 
shared libraries, which are available for application 
programs. 

 
3 .  A p p l i c a t i o n - C e n t r i c  N e t wo r k i n g 
Framework 

 
3.1 Architecture Overview 
 
Network layering architecture makes an easy develop-
ment environment, but imposes overheads on developers 
since available resources are limited. In our work, we 
distinguish between performance-critical part and 
usability-critical part in terms of development. The 
performance-critical part is closely related to hardware 
and should be optimized at the device driver level by the 
kernel developer. The usability-critical part is classified  
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Figure 3. Proposed network stack 
 

into the network protocol part and application part. An 
optimized networking algorithm should be able to be 
implemented in the network protocol part, and data-
driven programming, which enables sensor nodes to 
gather information, should be available in the application 
part. For this, this paper differentiates the static part of the 
kernel from the dynamic one. Network functionality in 
the static kernel is to maintain the connection to 
neighboring nodes and transmit the data packets to them. 
Implementation of networking algorithms and supporting 
application programs takes place in the dynamic part of 
the kernel. 

Figure 3 shows three-layered architecture; MLL 
(MAC and Data Link Layer), NSL (Networking Support 
Layer), and DNL (Dynamic Network Layer). The static 
kernel contains MLL and NSL. The bottom layer MLL, 
which controls the network devices, manages the physical 
connection and transmits data packets. NSL supports 
logical connections, managing neighboring nodes and 
data transmission. DNL, which belongs to the dynamic 
part of the kernel, enables implementing network protocol 
algorithms and provides user API for easy development. 
In the proposed network architecture, three classes of 
developers can implement layer-specific programs, 
without interfering in others, and the usage of 
modularization of operating system becomes maximized. 
In particular, the RETOS loadable kernel module makes 
efficient network architecture possible. The following 
sections describe the detailed design of NSL and DNL. 

 
3.2 Networking Support Layer 

 
NSL, interposed between MLL and DNL, maintains the 
information of neighboring nodes and passes it to DNL.  
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Table 1. Elements of Logical Link Table (LLT)  
Item Description Item Description 

Node ID Node sequence number Delivery Rate Delivery success ratio 

Position Logical position  ACK/NACK  Use ack/nack or not 

LQI Link quality  Delivery Time Packet delivery time 

RSSI Signal strength  Battery Level Battery residual 

CCA Channel loading status Valid Node validate selection 

 
The network algorithm used in DNL determines the 
destination node, and transmits the data to the target node. 
As shown in Figure 4, NSL consists of the Table Manager, 
Status Manager, Data Delivery Manager, and NSL API. 
The Table Manager manages Logical Link Table (LLT) 
which contains the information of neighboring nodes. 
LLT keeps the data between the nodes that can guarantee 
real-time, energy efficiency, and reliability (Table 1).  To 
preserve LTT, the 2-way ADV-REQ handshake protocol 
[13], is used. The querying period is set to be periodic or 
non-periodic by network protocol developers by using 
API. 

The Data Delivery Manager manages Send/Suspend/ 
Receive Queue for data transmission. Suspend Queue is 
added to Send/Receive Queue, allowing an individual 
router to function as a router in the proposed architecture.  
Suspend Queue is where received packets are suspended 
until the packets’ next routing node is determined. The 
data transmission rate is changed using   Suspend Queue, 
and this allows avoiding bottlenecks to be avoided and 
the traffic to be monitored. The Status Manager monitors 
the general status of the incoming data, the information of 
the specified neighboring nodes and the network queue. 
Then the Status Manger sends the information to DNL 
and sends the decision of DNL to NSL. The Status 
Manager also hands over the received packets to Suspend 
Queue, or transmits them directly to the neighboring 
nodes. NSL API, the interface of DNL and NSL, consists 
of the Table Management API Group, Status Monitoring 
API Group, and Data Delivery API Group so that NSL 
API controls three managers. Each API in the dynamic  
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loadable kernel module is invoked as a kernel function. 
 
3.3 Dynamic Networking Layer 
 
In DNL, networking algorithms are implemented and 
packaged in a library using reconfigurable RETOS 
dynamic kernel modules. Protocols in the layer decide the 
destination of data packets, and send them to the 
appropriate node. The protocols can be built reliable or  
real-time depending on the applications and data types. 
Existing protocols can be implemented in this layer. For 
this,  standardized API is  defined in DNL, and 
implemented network algorithms provide generic API to 
users via DNL API. Various network algorithms are 
managed as a set of the library in the dynamic module.  
Standardized DNL API is readily available to users 
without causing any confusion. DNL modules are 
assigned dynamically depending on applications. For 
example, a structural monitoring application requires 
reliable data transmission, an environment monitoring 
application needs periodic data burst, and a tracking 
application detects events and sends the data in a limited 
time. They all need different network algorithms, and 
DNL provides the required modules to the applications.  

Figure 5 describes the DNL module architecture. The 
DNL module keeps DNL API Abstraction to provide 
standardized DNL API. NSL API at the bottom of DNL 
maintains NSL Control Abstraction. The DNL module 
controls the information of neighboring nodes, network 
status information, and data transmission provided by 
NSL via NSL control abstraction. The core network 
algorithm and data management algorithm are 
implemented between DNL API abstraction and NSL 
control abstraction, making network protocols available 
to the DNL module. DNL API is defined in different ways 
since applications take various forms. In this paper, the 
concept of existing TCP/IP has been applied to the sensor 
network. To make applications independent from network 
protocols, users are allowed to choose a network 



protocol; it should provide the required functionalities. 
This socket-like networking mechanism does not make 
usage of port numbers, but depends on the chosen 
network modules. Network protocols are implemented 
and encapsulated, and, by using them application 
developers are able to make independent applications 
regardless of the actual implementation of the network 
protocols. 

 
4. Implementation 
 
The proposed networking architecture has been 
implemented in the RETOS kernel. We have built MLL 
and NSL in the kernel and implemented DNL using 
various network algorithms with LKM, and evaluated the 
validity of the proposed network architecture. 

Tmote Sky [12] uses the CC2420 [14] transceiver 
which offers a data rate of 250kbps in 2.4GHz. The 
hardware is compatible with IEEE 802.15.4 MAC. The 
data frames used in IEEE 802.15.4 of CC2420 are 
handled with packets, leaving little change to be 
controlled by software. That makes it difficult to a 
implement variety of MAC, but CC2420 provides several 
advantages. It handles the majority of the tasks at the 
hardware level, and offers a well-defined interface for 
software development leading to minimizing MLL in size 
and improving it in performance. CC2420 is equiped with 
the basic elements such as CCA and LQI, which are 
necessary to implement NSL. Their presence makes more 
efficient MLL than the software-based MAC such as S-
MAC [9], B-MAC [19], or Z-MAC [15]. Assured that 
fundamental functionality such as MAC protocol will be 
supported by hardware in the future, we have 
implemented MLL out of a radio transceiver. MLL is 
implemented using RETOS Device Driver Architecture 
(R-DDA) for smooth connection to NSL. 
MLL and NSL are both implemented in the static part of 
the kernel, but should be separated from each other to 
guarantee independency. MLL is involved with the 
hardware details, and has to be device-dependent. NSL 
should be device-independent since it manages 
neighboring nodes and transmitted data. We developed 
NSL and implemented the Neighbor Table, Network 
Queue, and API using a device-independent data structure. 
DNL uses a dynamic architecture and this causes more 
problems than MLL or NSL does. To implement DNL 
API Abstraction and NSL Control Abstraction, memory 
waste and dynamic linking should be handled. RETOS 
LKM solved these problems [7]. In the implementation, 
we used a single shared kernel stack to run the modules. 
In this case, however, module data, which are stored in 
the kernel stack can be corrupted during the context 
switching. To solve this problem, we blocked context 
switching while the module function runs. 
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Figure 6. Relocation of DNL module
 
The dynamic module linking method is the next to be 

considered. Generally, MPU in a sensor node is a lack of 
MMU which translates a physical memory address into a 
virtual memory address and vice versa. In addition to the 
translation, MMU authenticates the access to the kernel 
mode. For these reasons operating systems, which use a 
loadable library, do not function properly without MMU. 
Relocation, as shown in Figure 6, was used to solve the 
problem. Absolute memory addresses are pre-defined 
when the source code is compiled, stored in the 
Relocation Table, and modified when the respective 
codes are loaded. In this case, the entire code image 
should be scanned and modified, but performance can be 
improved since memory access is available using absolute 
memory addresses. 

The actual network protocol was developed on DNL. 
Reliability, real-time, and energy efficiency are the 
important characteristics for data transmission. They 
affect each others’ performance, so maximizing all three 
features at the same time is difficult to achieve. The 
suggested network architecture should consider these 
characteristics of WSN. To show this we implemented 
respective network protocols for each feature. A reliable 
network protocol uses LQI measurement based routing 
algorithm [16]. Real-time network protocol adopts 
SPEED [17]. An energy-aware network protocol employs 
[18], which monitors the battery leftover and finds the 
optimized route, and was developed on NSL. These three 
network protocols were implemented using the RETOS 
loadable module. In the next section, we show that, while 
running the same application, a network protocol can be 
alternated with others without any modification of the 
application codes. 

 
5. Evaluation 

 
In general, sensor network applications can be classified 
into two fields. One includes periodic monitoring or 
event-responded monitoring, and various tracking 
programs that belong to the other. We implemented two 
dif ferent  appl ication programs to evaluate the 
performance of the suggested architecture; a simple 
environment monitoring application and an event-  
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Figure 7. Routing paths of RETOS-Surge according to 
three DNL protocols 

 
responded tracking application. We chose the Surge, one 
of the representative applications built on TinyOS, for the 
environment monitoring application. Only the application 
part of the program has been ported, while the multi-hop 
routing algorithm has been excluded. We used RETOS-
MPT [18] for the tracking application. 

The performance of the applications has been 
evaluated using three DNL protocols. The architecture 
proposed in this paper provides an efficient programming 
environment, allowing minimum changes on the rest of 
the parts other than the application layer, and increased 
reusability. Thus, performance has been measured 
according to these independence and reusability. 

 
5.1 Modularity and Adaptability 
 
The reusability of modules has been tested by running 
two applications with different DNL modules. Since the 
applications were implemented using standardized DNL 
API, they should run by simply changing modules. Figure 
7 shows the respective results of the three different DNL 
modules used, and illustrates the packets’ routing paths.  
As shown in the figure, each routing path is dependent on 
the used DNL modules. This clarifies that DNL modules 
and applications can be developed and used separately. 
Hence various DNL modules and applications can be 
a ssemb led  wi th  ne twork  p ro toco l s  by  needs .  
    To validate the independence of the layers, the 
structures of the network packets have been analyzed and 
are shown in Figure 8. Our architecture is distinguished 
from SP [10] in the fact that each layer is independent 
from the layer above. This is shown by analyzing the 
packets’ independency between each layer and the one 
above. The structure of a packet is changed only in the 
DNL when a used module is alternated; meaning that a  
change of the packet does not affect packets in different 
layers. This shows that each layer functions 
independently and separately. 
 
5.2 Overhead Analysis 

 
The proposed network architecture minimizes the 
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dynamic part to reduce performance overhead, and it 
should show the equivalent performance to those that do 
not use layering architecture. We compared RETOS-
Surge with NSL and DNL to the counterpart without the  
layers, and observed overheads by measuring data 
transfer time in one-hop and multi-hop topologies. Data 
transfer time in the one-hop topology has been observed 
to check if it is stable and does not cause unreasonable 
overheads. Figure 9 shows that applications that do not 
make use of NSL have noticeable variation in data 
transfer time. However, the proposed architecture shows a 
faster and more stable data transfer time than its 
counterpart. The architecture that does not adopt layering 
principle has no proper queue control mechanism, and is 
affected by the nodes’ current status, causing irregular 
transmission. On the other hand, our architecture 
guarantees fast and stable transmission since the queue 
control mechanism and the data transmission between 
nodes are conducted only within the NSL of the kernel. 

The proposed architecture must show higher 
performance at data transmission than the ones not 
utilizing network architecture, because the proposed 
architecture only relays multi-hop data regardless of the  
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Figure 9. One-hop data transmission 
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Figure 10. Multi-hop data transmission 

 
Table 2. Code size for RETOS-Surge 

 
TinyOS 
(bytes) 

RETOS Kernel 
(bytes) 

RETOS  
Library + App 

(bytes) 

RETOS  Total 
(bytes) 

ROM RAM ROM RAM ROM RAM ROM RAM
Reliable 

DNL 17,036 668 

20,464 
 

1,052 
 

1,003 243 21,467 1,295

Real-time 
DNL 24,046 1,522 2,731 317 23,195 1,369

Energy-
aware DNL 18,201 1,800 2,473 223 22,937 1,275

 
Table 3. Code size for RETOS-MPT 

 
TinyOS 
(bytes) 

RETOS Kernel 
(bytes) 

RETOS  
Library + App 

(bytes) 

RETOS  Total 
(bytes) 

ROM RAM ROM RAM ROM ROM RAM ROM
Reliable 

DNL 20,944 597 

 
20,464 

 
1,052 

 

1,942 262 22,406 1,314

Real-time 
DNL 26,944 1,743 3,123 351 23,587 1,403

Energy-
aware DNL 20,253 1,943 2,987 278 23,451 1,330

 
packets’ source or their destination. We observed multi- 
hop data transmission time, and the result is shown in 
Figure 10. As the number of hops increases, our 
architecture shows better performance than the one that 
does not as the number of hops increases. When network 
architecture is not used, the whole data packet is checked 
to determine the next hop. However in our architecture, 
fast data transmission is possible since switching 
overhead does not occur and data packets are sent directly 
in NSL.  

In the sensor network environment, not only the 
performance of applications but also the size of codes or 
data is also important. The proposed dynamic architecture 
makes the size of codes larger than others do. We 
measured the size and it is shown in Table 2 and 3. As 
shown in the tables, the kernel, library, and application 
are run using 30k or less flash memory and 2k or less 
RAM. Although this size is bigger than TinyOS, it is 
acceptable considering the advantages of the dynamic 
architecture. 

 
 

6. Related Work 
 

The related work can be classified into three categories: 
network abstraction for WSN, kernel-independent 
application development, and application-independent 
implementation environment development. Network 
abstraction includes Ye [19], Dunkels [20], Kumar [11], 
and Polastre [10]. Ye makes an effort to implement WSN 
protocols in the traditional layered model, but succeeds 
only in the MAC layer. Dunkels implemented TCP/IP 
stack in 8-bit AVR MCU, however the characteristics are 
more suitable to a home network than to WSN. Kumar 
suggested a data centric network stack, but it had many 
obstacles to be deployed in real situations. It is not 
suitable for some application fields such as event 
detection, and independency of the layers is not 
guaranteed. [10] divided WSN protocols into the link 
layer and the rest, and bundled them using sensornet 
protocol (SP). However, these works do not fully adopt a 
network stack, but use a data structure to manage various 
protocols. Moreover, they do not classify application and 
network protocols. These features make these works more 
appropriate to an independent-image operating system 
such as TinyOS. 

There are several works that try to separate kernel and 
application, and these include SOS [5], Contiki [6], and 
RETOS [7]. SOS divides a kernel into static part and 
dynamic part, and the latter is used to implement 
application. The message mechanism is used to enable 
communication between the static part and the dynamic 
part. For this, it suggests the message mechanism to 
enable communication between the static part and the 
dynamic part, becoming a successful operating system for 
WSN. Contiki separates the process from the static kernel, 
and uses the process to implement application. Threads 
are enabled within a process, and threads communicate 
with the kernel via messages. This is applicable to 
modularization since the development of the application 
is possible independent of kernel, however, the separation 
of the memory use is still imperfect. RETOS not only 
separates the kernel from application, but also supports 
LKM. The detailed work on RETOS is found in [7]. An 
application-independent development environment finds 
various works. Some of the most representative research 
fields are script programming and query programming 
based on middleware [21]. These methods make 
programming easy and the length of codes short, but use 
of various network protocols difficult.  Whitehouse [22] 
and Welsh [23] suggest an easy application programming 
method, providing abstract API to users. However, 
applications are implemented on a static network protocol, 
and they are suitable only to certain areas. 

 
 
 
 



7. Conclusion 
 
The progress of WSN technology sees no limits, and the 
advent of devices with more computing power leads to 
the need of better WSN development environments. This 
paper offers a new WSN development environment, 
proposing network architecture that guarantees the 
efficiency and performance of development from the 
developers’ point of view. The architecture holds the 
advantages of a static network layer of the traditional 
general purpose OS, and meets the diversity that is 
needed in WSN. By guaranteeing the independency of 
each layer, we increase the reusability of network 
protocols and provide agility and ease to the development 
environment. We first ported RETOS kernel to and 
implemented MLL and NSL. On them we developed 
several DNL protocols and examined the validity of the 
proposed architecture. The results show that efficient 
network programming is possible without any 
degradation of performance. With this result, we are 
assured that the proposed network protocol architecture is 
suitable for the use in a WSN, and suggest a guideline for 
modularized OS such as RETOS. 

Future work will be extended to the validation of the 
architectures with SOS and Contiki. Additionally, we will 
build a library with various existing network protocols, 
and improve the performance of our architecture by 
developing a neighbor nodes managing method and a 
queue managing method. 
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